Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 818: 151698, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34798091

RESUMEN

Aiming to fill a need for data regarding radiocesium transport via both branchflow and stemflow through forests impacted by radioactive fallout, this study examined the vertical variation of radiocesium flux from branchflow and stemflow through the canopies of young Japanese cedar (Cryptomeria japonica (L. f.) D. Don) and Japanese oak (Quercus serrata Murray) trees in the aftermath of the Fukushima Dai-ichi Nuclear Power Plant accident. In forested areas approximately 40 km northwest of the location of the Fukushima Dai-ichi accident, the 137Cs concentration varied significantly among sampling periods and between the two forests, with the oak stand exhibiting higher 137Cs concentrations and depositional fluxes than the cedar stand. Expressed per unit trunk basal area, the depositional flux of 137Cs generated from the cedar and oak stands was 375 and 2810 Bq m-2 year-1, respectively. Of this total, 71% and 48% originated from the cedar and oak canopy, respectively, while the remainder originated from the trunk. Accordingly, the origin of radiocesium was more balanced for the oak stand with almost half of the flux coming from the canopy (48%) and the other half from the trunk (52%). Only about a quarter (29%) of the radiocesium flux originated from the trunk in Japanese cedar. Results from this work provide needed data that can enable a more thorough conceptualization of radiocesium cycling in forests. Coupling these empirical results with a physically-based model would likely lead to better forest management and proactive strategies for rehabilitating radioactively-contaminated forests and reducing the exposure risk of radiation dose rate for those that utilize forest products.


Asunto(s)
Accidente Nuclear de Fukushima , Quercus , Monitoreo de Radiación , Ceniza Radiactiva , Contaminantes Radiactivos del Suelo , Radioisótopos de Cesio/análisis , Bosques , Japón , Plantas de Energía Nuclear , Monitoreo de Radiación/métodos , Contaminantes Radiactivos del Suelo/análisis
2.
J Environ Radioact ; 210: 105817, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30236975

RESUMEN

The study investigated temporal changes in the 137Cs concentrations in vegetal and hydrological samples collected from various forests in Yamakiya District, Kawamata Town of Fukushima prefecture over six years following the Fukushima Dai-ichi nuclear power plant accident. Cesium-137 was detected in all forest environmental samples. However, the concentration in most samples decreased exponentially with time. The 137Cs concentrations in throughfall samples exhibited a double-exponential decreasing trend with time. Temporal changes in the 137Cs concentration in vegetal samples and stemflow were approximated by using a single-exponential equation. A comparison of the decline coefficient for the latter observation period (>2 y since the accident) revealed that the declining trend of 137Cs concentrations varied between foliage and the outer barks of the Japanese cedar and Japanese konara oak trees. The 137Cs concentration in cedar needles decreased exponentially while that in konara oak leaves was constant over the last six years. Conversely, the declining trend of 137Cs concentration in the outer bark of konara oak exceeded that of cedar. The results suggested that self-decontamination processes and internal recycling of 137Cs varied among tree species and different tree parts. The results indicated that the leaching of 137Cs in the throughfall in Japanese cedar was dependent on the 137Cs concentration in needles. However, a comparison of 137Cs concentrations in vegetal and hydrological samples from each sampling year showed that the leaching rate decreased with time. Conversely, the 137Cs concentrations in the stemflow were independent of the concentrations in the outer bark. The declining trend of 137Cs concentrations in litterfall (λ: 0.31-0.33 y-1) was similar to that of the mean of new/old needles (λ: 0.26-0.33 y-1) for cedar stands. With respect to the hydrological components, the 137Cs concentration in the stemflow (λ: 0.32-0.33 y-1) decreased at a slightly slower rate than that in the throughfall (λ: 0.36-0.54 y-1) for the cedar forest. The decline coefficients of 137Cs concentration in the aforementioned types of hydrological components slightly exceeded that for the vegetal samples. The results suggest that monitoring of 137Cs concentrations in hydrological components and vegetal samples can aid in further understanding the leaching mechanisms of 137Cs from trees to rainwater.


Asunto(s)
Bosques , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Radioisótopos de Cesio , Japón , Plantas de Energía Nuclear , Contaminantes Radiactivos del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...